Comparison of the drug-drug interactions potential of erlotinib and gefitinib via inhibition of UDP-glucuronosyltransferases.
نویسندگان
چکیده
We aimed to investigate and compare the effects of erlotinib and gefitinib on UDP-glucuronosyltransferase (UGT) activities and to quantitatively evaluate their drug-drug interaction (DDI) potential due to UGT inhibition. The inhibitory effects of erlotinib and gefitinib on UGTs were determined using high-performance liquid chromatography by measuring the formation rates for 4-methylumbelliferone (4-MU) glucuronide, imipramine N-glucuronide, and bilirubin glucuronides using recombinant human UGT isoforms and human liver microsomes (HLMs) in the absence or presence of erlotinib and gefitinib. Inhibition kinetic studies were conducted. Area under the curve (AUC) ratios were used to predict the risk of potential DDI in vivo. Erlotinib exhibited selective potent competitive inhibition against 4-MU glucuronidation by UGT1A1, and gefitinib demonstrated a wide range of inhibition against UGT-mediated 4-MU glucuronidation, particularly against UGT1A1, UGT1A7, UGT1A9, and UGT2B7. Erlotinib also exerted potent mixed inhibition against bilirubin glucuronidation in HLMs. We estimated that coadministration of erlotinib at 100 mg/day or higher doses may result in at least a 30% increase in the AUC of drugs predominantly cleared by UGT1A1. Thus, the coadministration of erlotinib with drugs primarily cleared by UGT1A1 may result in potential DDI. In contrast, gefitinib is unlikely to cause a clinically significant DDI through inhibition of glucuronidation.
منابع مشابه
Comparison of the inhibition potentials of icotinib and erlotinib against human UDP-glucuronosyltransferase 1A1
UDP-glucuronosyltransferase 1A1 (UGT1A1) plays a key role in detoxification of many potentially harmful compounds and drugs. UGT1A1 inhibition may bring risks of drug-drug interactions (DDIs), hyperbilirubinemia and drug-induced liver injury. This study aimed to investigate and compare the inhibitory effects of icotinib and erlotinib against UGT1A1, as well as to evaluate their potential DDI ri...
متن کاملInteractions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins.
The drug-drug interaction (DDI) potential of tyrosine kinase inhibitors (TKI) as interacting drugs via transporter inhibition has not been fully assessed. Here, we estimated the half maximal inhibitory concentration (IC(50)) values for 8 small-molecule TKIs (imatinib, dasatinib, nilotinib, gefitinib, erlotinib, sunitinib, lapatinib, and sorafenib) on [(14)C]metformin transport by human organic ...
متن کاملPreclinical Development Interactions of Tyrosine Kinase Inhibitors with Organic Cation Transporters and Multidrug and Toxic Compound Extrusion Proteins
The drug–drug interaction (DDI) potential of tyrosine kinase inhibitors (TKI) as interacting drugs via transporter inhibition has not been fully assessed. Here, we estimated the half maximal inhibitory concentration (IC50) values for 8 small-molecule TKIs (imatinib, dasatinib, nilotinib, gefitinib, erlotinib, sunitinib, lapatinib, and sorafenib) on [C]metformin transport by human organic cation...
متن کاملDrug-Drug Interactions Potential of Icariin and Its Intestinal Metabolites via Inhibition of Intestinal UDP-Glucuronosyltransferases
Icariin is known as an indicative constituent of the Epimedium genus, which has been commonly used in Chinese herbal medicine to enhance treat impotence and improve sexual function, as well as for several other indications for over 2000 years. In this study, we aimed to investigate the effects of icariin and its intestinal metabolites on the activities of human UDP-glucuronosyltransferase (UGT)...
متن کاملUse of cloned and expressed human UDP-glucuronosyltransferases for the assessment of human drug conjugation and identification of potential drug interactions.
Glucuronidation is an important pathway for human drug metabolism. Four cloned and expressed human UDP-glucuronosyltransferases (UGT1A1, UGT1A6, UGT1A9, and UGT2B15) were used to screen a series of three potential drug substrates differing only in position of the phenol moiety. The meta and para phenols, UK-156,037 and UK-157,147, were found to be substrates for UGT1A1 with K(m) values of 256 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 38 1 شماره
صفحات -
تاریخ انتشار 2010